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J. Phys. A: Math. Gen. 13 (1980) 2723-2733. Printed in Great Britain 

Twisted supermultiplets 

A Chockalingham and C J Isham 
Imperial College of Science and Technology, Exhibition Road, London SW7 2BZ 

Received 24 January 1980 

Abstract. We investigate the topological effects of non simply connected space-time on 
supergravity with matter supermultiplets. Topological sectors are typically labelled by one 
or a pair of elements from the group of homomorphisms of v l ( M )  into Z2 and Lorentz 
invariant vacuum states are defined by analogy with the 8-vacua of Yang-Mills theory. 

1. Introduction 

Much recent work on quantum gravity has involved topological properties of the 
space-time manifold. For example, a series of papers by one of us (CJI) and S J Avis has 
studied the quantum theory of fields propagating on a manifold M that is not simply 
connected. This topological property manifests itself in the existence of non trivial line 
bundles on M whose cross-sections may be regarded as a generalisation of the concept 
of a scalar field. It also leads to the existence of inequivalent spin connections. Both 
features give significant quantum field theoretic effects such as different S-matrices, self 
energies and vacuum polarisations in the different topological sectors. 

One striking property is that the set of real line bundles on M and the set of 
inequivalent spin structures are both labelled by the same cohomology group 
H ' ( M ;  &)-the group of homomorphisms of the fundamental group ?rl(M) into Zz. 
This suggests that theories involving both spinor and scalar fields may be particularly 
interesting from this point of view and a natural example is afforded by supersymmetric 
multiplets. 

The present paper is therefore concerned with the study of supersymmetric field 
theories in a general non simply connected space-time (for a discussion when the 
space-time is metrically flat see Avis 1979). The purpose is to see if the boson and 
fermion members of a multiplet can be simultaneously twisted in a way which is 
compatible with supersymmetry. One anticipates that as in the case of a single spinor 
(Avis and Isham 1979) this effect will lead to a classification of vacuum states analogous 
to the @-vacuum introduced in Yang-Mills instanton physics by Jackiw and Rebbi 
(1976) and Callan et a1 (1976). It must be emphasised that this is not just an empty 
mathematical exercise. There is in general no canonical way of selecting a particular 
spin connection on a non simply connected space-time and the whole set must be 
considered. 

In 0 2 we briefly review the manner in which twisted fields arise, and show that the 
concept of a twisted spin connection is equivalent to a twisted spinor field. We aiso 
discuss the special role played by Majorana spinors. In 8 3 we investigate the assign- 
ment of topological twists to supergravity itself and to the scalar and Maxwell multiplets 
coupled to the gravity theory. The paper concludes with a short discussion. 
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2724 A Chockalingham and C J Isham 

We shall assume throughout that space-time is a paracompact pseudo-Riemannian 
manifold which is both space and time orientable and which admits spinors (and is hence 
parallelisable, Geroch 1968). Most of the discussion has a fairly obvious analogue in 
the Riemannian case provided that the extra topological complexity introduced by the 
possible non-triviality of the tangent bundle is allowed for. 

2. Twisted scalar and spinor fields 

2.1. 

Let us briefly review the way in which twisted scalar fields and twisted spin connections 
arise. A normal real scalar field is a function from the space-time manifold M to the 
real numbers or, equivalently, a cross-section of the trivial real line bundle over M. If 
the topology of M is sufficiently complicated there may exist non trivial line bundles and 
a twisted scalar field is defined to be a cross-section of one of these (Isham 1978a). Such 
a bundle is associated with a principal 0(1) = Z2 bundle and the set of these is classified 
by elements of the cohomology group H 1 ( M ;  Z2) .  Hence twisted real scalars can only 
exist if the space-time is not simply connected. 

There are various ways of representing cross-sections. Since a vector bundle X is 
locally trivial, there exist coverings {U,} of M such that X restricted to U, is in product 
form. Thus there are maps ha from U, x R into U,) (7j is the projection map) and 
any cross-section 4 possesses local representatives mapping U, into R and 
satisfying 

4(x) = ha(x, 4 ( a ) ( x ) ) *  (2.1) 

If U, n U, # 4 then 4(,) and are related on U, n U, by 

where gap : U, n U, + 0(1) = (1, -1) are the structure functions of the bundle. 
Alternatively each &-bundle over M is a double covering& of M with a projection 

map r and cross-sectio;s of an associated line bundle are in bijective correspondence 
with functions 4 from M into R satisfying 

&pa) = -m, &(pel  = $ ( P I  (2.3) 

where e and a are respectively the identity and generator of 22 = O(1). The precise 
connection is 

4 ( x )  = [ P ,  &P)l  any p in r - ' ( x )  (2.4) 

where [ p ,  v ]  denotes the equivalence class of ( p ,  Y) E & x R defined in the setting up of 
the associated line bundle (Husemoller 1966). The second definition is related to the 
automorphic function approach exploited by Banach and Dowker (1978, 1979a,b), 
Banach (1979) in which fields are defined on the universal covering space of M. 

Both classical and quantum equations of motion may be defined for twisted fields 
and a number of calculations illustrating the effects of these topologically distinct 
configurations have been performed (Isham 1978a, Avis and Isham 1978, Banach and 
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Dowker l978,1979a, b, Banach 1979, DeWitt et a1 1979, Ford l979,1980a,b, Toms 
1979a, b, Unwin 1979, 1980, Kennedy et a1 1979, Unwin and Critchley 1979). 

2.2. 

A simple way of seeing the existence of twisted spin connections is as follows (Isham 
1978b, Avis and Isham 1979). The Dirac Lagrangian for a spinor field in a gravitational 
background is 

(2.5) W e ,  +I = det(e){8$yaV,@ - V,$ya+)eacL - ~ $ 4 1  
where 

v,+ = (a, +w,)+, v,J = a,$ - $U, (2.6) 

uab = i[ya, y b ]  (2.7) 
1 ab 

W f i = i @ , a b f l  

w w a b  = { p P p ) e a a e b p  + ebUeau,@ (2.8) 

and and e,, are respectively the Christoffel symbol'and vierbein. 
Now subject the vierbein to a gauge transformation 

(2.9) 

is a smooth map from M into the connected component of the Lorentz group 

b 
e a , + e L , = e b , f l  a 

where 
2'~. The corresponding transformation of the spin connection is 

m e a 6  w E a b  = u f i c d a C a a d b  + a c b a c a , w .  (2.10) 

If there exists a covering map S from M into SL(2, C) such that 

A(S(X)) =W) (2.11) 

(A is the two-to-one homomorphism of SL(2, @) onto 2'~) then (2.10) can be rewritten 
in matrix form as 

w, + U,' = s-'w,s +i  a,s-'s (2.12) 

and the Lagrangian exhibits the invariance property 9 ( e ,  +) = 2'(ea, S-'@). Under 
these circumstances w, and w, may be regarded as physically equivalent. However, 
the ability to find a function S such that (2.11) is true depends on global topological 
properties of M. Indeed define two 2'~ gauge functions and a' to be equivalent if 
sZ-'SZ' possesses a covering map. Then the set of such equivalence classes may be given 
an abelian group structure and is isomorphic to H ' ( M ;  2 2 ) .  

Thus if the gauge function SIh represents a particular non trivial element h in 
H 1 ( M ;  Zz) the gauge transformation (2.9) and (2.10) cannot be compensated by an 
SL(2, C) transformation of the spinor field and as a result w, must be regarded as being 
physically distinct from w,. Specific calculations of self-energies or vacuum polarisa- 
tions substantiate this (DeWitt eta1 1979, Ford l979,1980a, b). The term 'twisted spin 
connection' refers to the objects U, and they are classified by elements of the 
cohomology group H ' ( M ;  Zz ) .  Note that the twist is relative to a given initial choice of 
vierbein and hence trivialisation of the tangent bundle. The connection with Milnor's 
definition (Milnor 1963) of a spin structure is easily made once it is observed that an 
SL(2, C) bundle over a non compact four-dimensional manifold is necessarily globally 
trivial (Geroch 1968). 

n 

n 

n 
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2.3. 

It is striking that the topological classes of twisted scalar fields and spin connections are 
both labelled by the cohomology group H 1 ( M ;  Zz). To understand the significance of 
this in a supersymmetric model it would clearly be useful if the twist in the spin 
connection could in some way be transferred to the spinor field. 

This may be acheived by considering the vierbein gauged Lagrangian (2.5): 

%(ea, $1 = det (e) {~( t / ;y ,Cs, (wn)$-V, (w")~~, t ,b)eb~Rba - m$+} (2.13) 

in which R is an z?-valued gauge function that cannot be globally lifted to SL(2, @). 
Cover M with a family (U,} of contractible open sets-this is always possible since M is 
a manifold. On each U, the function R can be lifted to an SL(2, @)-valued function S(,)  
such that, for all x in U,, 

N S ( , ) ( X ) )  = W X )  (2.14) 

S(,,(x)t,b(x) and note that on U, the effects and w n  satisfies (2.12). Now define t,bc,)\x) 
of 62 can be locally gauged away: 

However, by the assumption on 0, $(,I cannot be extended to a global spinor field 
on M. Instead on U, n U, we have $(,)(x) = S(,)(x)Si' (x)t,b(,)(x) and A(S(,)) = A(S(,)) 
which implies A(S(,,S$) = I. Hence S(,)SG1) belongs to the. Zz centre of SL(2, @) and 
on U, n U, 

$ ( U , ( X )  = gap(x)t,bc&) (2.16) 

where gap = S( , )S& maps M into Zz. Clearly g,,g,, = g,,, g,, = U and gap = gi:. Thus 
{gma} are the structure functions of a principal &-bundle over A4 which in fact 
corresponds to the element of H'(,W; Zz) associated earlier with 0, (This bundle is of 
course trivial when viewed as an SL(2, C )  bundle.) Equation (2.16) shows that the set of 
functions defines a cross-section of an associated vector bundle and we shall refer 
to such sections as twisted spinor fields. It is apparent from (2.15) that, as desired, the 
spin connection's twist may be absorbed in a twist in the spinor field. 

There is another useful way of viewing this construction. The map R from M into 2?? 
pulls back a Zz-bundle h? over from the &,-bundle with projection map A from 
SL(2, @) onto 3'~. In the usual way there exists a bundle map S from h? into SL(2, C) ,  
with the commutative diagram 

1 

s 
A? - SL(2, a=) 

(2.17) 

If t,b is a normal spinor field function from M into C", a new field may be defined on 
$1 by I $ ( p ) = $ ( p ) $ ( r r ( p ) ) .  Since $ ( p a )  = - $ ( p )  we see that & p a )  = -$(e) and hence 
$ defines a cross-section of the bundle associated with the &-bundle M. The local 
representatives of this cross-section are simply the $(,I defined above. 
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2.4. 

Let Zh[e] = Z [ e R h ]  denote the generating functional for a quantised spinor field with 
external vierbein and spin connection onh where is a gauge function representing a 
particular h in H ' ( M ;  ~ 2 ) :  

@6+ e h ' h ) j M s ( e v  $1 (2.18) 

Then, as shown in Avis and Isham (1979), an 2'~ gauge invariant (up to an irrelevant 
overall factor) functional is 

I 
(2.19) 

where x is a character on H 1 ( M ;  Z2) which thus labels the vacuum state by analogy with 
the Yang-Mills 8-parameter. This construction plus those in 5 2.3 are vaGd for both 
complex and real (Majorana) spinors of any dimension. However, a phenomenon 
arises for complex spinors which was first discussed by Petry (1979) and is worth 
outlining in the context of the present paper. 

Suppose that H 2 ( M ;  Z )  has no elements of order 2. Then any principal Z2-bundle 
over M is trivial if viewed as a U 1  bundle and there will exist functions A, from U, into 
U1 such that on U, n Up the structure functions of (2.16) obey 

gap ( X  1 = A i1 ( X  ) h p  (XI i.e. A,& = ApSp. (2.20) 

Define new spinor functions x ( , ) ( x )  = A,(x)~+b<,) (x) .  Then from (2.20) x ( , ) ( x )  = , Y ( @ ) ( x )  
and hence a global spinor x is defined. In effect we have exploited the fact that (Avis 
and Isham 1980), on a manifold M where H 2 ( M ;  Z )  has no two-torsion, the gauge 
function R can be globally lifted to a function from M into Spin'(3, 1)- 
SL(2, @) X z2U1. This group was employed in Hawking and Pope (1978), as a means of 
constructing spinor fields on manifolds that do not admit them in a conventional way, 
but clearly it also plays a role in understanding the significance of inequivalent spin 
structures. 

On U, we find 

9 ( e R , + )  = det e{~[kra(V,(o)+A,a,A,l)X ea* + H C ] - ~ ~ X }  (2.21) 

and see that the topological information carried by R is absorbed entirely by an effective 
electromagnetic field V,(Or) = l / i A ,  d,A, . Since gap= I] it follows that A %  = A; and 
hence we obtain a global function p from M into U1 by defining the restriction of p to 
U, to be A t .  Correspondingly V, = $p aCLp-'/i gives a globally defined field which is 
just the pullback by p of the Cartan Maurer structure form 8 on U1. The structure 
equations d8  + 8 A 8 = 0 show that in the present abelian case 8 and hence V = p"8  are 
closed forms. However, Vis not exact since if it were there would exist a real function cy 
on M such that p ( x )  = a eia(') but the Spin' (3,l) argument may be developed to show 
that p is not homotopic to a constant and hence cannot be of this exponential form. Thus 
we sec that the spinor twists may be absorbed in an external electromagnetic potential 
representing an element of H'(M;  R). 

This possibility is not present if Majorana spinors are employed as they cannot carry 
electromagnetic charge and the full topological treatment culminating in (2.19) is 
appropriate. This leads naturally to the consideration of supersymmetry multiplets 
which intrinsically contain such spinors. 

-1  2 
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3. Twisted supermultiplets 

3.1. 

Simple N = 1 supergravity contains a vierbein e,,, a spin-$ Majorana spinor 4, and, in 
its minimal form, two auxiliary scalar fields M and N and an auxiliary vector field b, 
(Stelle and West 1978a, Ferrara and van Nieuwenhuizen 1978a). In the notation of 
Stelle and West (1978a) the Lagrangian is 

SSG = det(e){$R (e, w ( e ,  $ ) ) / K ~  - $M2 -$N2 + $b,b’”} -31&y5 yuVp$,~fiYPK (3.1) 

(3.2) wpab (e, $1 E @,cab (e) + b2{&pYa$b + &aY,$b - 6wyb$ah) 

where wWab(e) is the spin connection of (2.8) and R is the scalar curvature. 

parameter E the fields transform as 
Under the action of an infinitesimal supersymmetry element with Grassmann 

Se,, = itcCy,$, (3.3) 

= ( ~ / K ) V ,  (e,  (e, $ ) ) E  + Y&, - b,yYb ’ ) E  - fr, (M + Y ~ N ) E  (3.4) 

(3.6) 

= -$i(det e)-l~~,YuY~Vp$,E~’pK - 3 K F Y 5 b U $ ,  - s K g Y ’ $ f l + $ K g Y 5 Y Y $ &  (3.5) 
SN = -9 (det e)-1Cy5y,y,y5V,$,~.upK +$&by$, + $ K F Y ~ $ , , N - ~ K ~ ~ ~ ~ ~ $ ~ ~  

1 Sb, = &det e)-’F-y5(g,, - ~ y , y ~ ) y ~ y , V ~ $ ~ ~ “ ~ ~ ~  +iKFyvbu$, 

-3KCy”@,b, - $ K T , ( M - k  Y5N)Y5E -$K(det e)-1E,aPPba~y5yp$p. (3.7) 

Our task is to see what, if any, of these fields can be twisted. The proof of the 
invariance (up to a four divergence) of -YSG depends on only the local algebraic 
properties of the Lagrangian and the group transformations. Hence this invariance will 
not be disturbed by twisting the fields and the only requirement is to ensure that 
(3.1)-(3.7) are well defined. 

Consider first the Lagrangian 5fSG which we require to be a normal function. The 
natural starting point is to twist the spin connection or equivalently, as shown in § 2.3, to 
twist the spinor field 4,. The square 4’ of a cross-section q5 of a real line bundle may be 
defined as a normal function by equating 42 restricted to U, with c$;,), There is 
consistency on U, n Up since gap = 1 and hence = c $ ( ~ ) .  This result extends 
naturally to products like &,b. In the present context this means that &y5 yuVp$K~”uPK is 
a normal function even if $ is twisted provided that, as we shall assume from now on, the 
vierbein is a standard one. Similarly terms like M 2  and N 2  are admissible whatever line 
bundles are employed as is b,b” if the obvious concept of a twisted vector field is 
introduced (a cross-section of the tensor product of the appropriate line bundle with the 
tangent bundle). Thus as far as the Lagrangian is concerned, any topological 
configurations for the fields $,, M, N and 6, may be assumed. 

The supersymmetry transformations, however, impose severe restrictions. Firstly 
equation (3.3) shows that in order for e,, to remain normal the supersymmetry 
parameter E must itself be twisted with the same degree of twist as 4,. This is consistent 
with the first term V,E in S$, (3.4) whilst the remaining two terms require M, N and b, 
to be normal fields. It may readily be checked that these topological assignments are 
compatible with the equations for SM, SN and Sb,. Thus one concludes that in simple 
supergravity any degree of twist may be carried by the spin-; field (and shared by E )  but 

2 2 
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the auxiliary fields must be normal. The results of 0 2.4 show that the vacuum states are 
labelled by the characters of H’(M; Zz) .  

In the full quantisation of the theory it is necessary to introduce ghost fields Cp, Cab 
and C(a complex spinor) corresponding respectively to the supersymmetry, Lorentz 
and general coordinate gauge transformations. These ghost fields are, together with the 
dynamical fields, invariant under the BRS transformations (Stelle and West 1978b) and 
this must be maintained in the topologically non-trivial sectors. An inspection of these 
transformations shows that this is so provided that C p  and CQb are normal fields while C 
carries the same degree of twist as 4,. The Fadeev-Popov terms in the Lagrangian are 
fully compatible with this assignment. 

3.2. 

Let us now consider the more complicated case of a scalar multiplet (A, B, x, F, G )  
(Wess and Zumino 1974a, b) in which A ,  B, F, G are scalars and ,y is a Majorana spinor 
coupled to supergravity. There are various forms of this (Ferrara et a1 1977, Cremmer 
and Scherk 1977, Das et a1 1977, Stelle and West 1978c, Ferrara and van Nieuwen- 
huizen 1978b) and for convenience we shall adopt the scheme of Stelle and West (1978) 
which gives a superconformally invariant theory. The Lagrangian is 

9 = -det e@,A6,A + 6,B6,B +igya6,Xea’” - F2 - G 2 }  

+ $ K  dete&y5y”[G+ y5F-qa(B+ y s A ) y a ] x - $ ~  deteN(FB+GA) 

+ $ K  det eM(GB -FA) 

- $K (det eb“ + i ? i ~ ~ ~ ~ ~ ~ I j ~ p r ~ 4 , ) ( B 6 ~ A  - A6,B - &ys y a x )  
M W K  + 3 - $ K f ( B  - YsA)(Y5 Y , Y 5 Y U v p J / K E  8 K 2 ~ w p a * 9 ~ I j p Y r J I , )  

- f~ ’ ( A ~  + B ~ ) L z ? ~ ,  (3.8) 
where 

(3.11) 

(3.12) 

SF = i F y T d  - iKijx, SG = i ~ y ~ y ~ ? , ~  + iKqYSX (3.13) 
where 

7 = - f ( M  + ysN + Y ~ ~ , Y ~ ) E .  (3.14) 

One characteristic property of this Lagrangian is the appearance of cubic inter- 
actions such as &y5ywGx involving three different fields. By analogy with the 
assignments in 0 3.1, one possible scheme is to make two of these twisted to the same 
degree and the third one normal. Equations (3.8)-(3.14) give rise to two alternatives. 
They are (i) A, B, F, G twisted, x normal and (ii) A, B, F, G normal, x twisted, all twists 
to be equal to that of 4, and E .  
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There is however, a much more general possibility. First recall that if h and h' are 
two elements in H 1 ( M ;  Zz) with corresponding principal Zz-bundles & and &, then 
h + h' represents the tensor product bundle &, 0 &,,, Secondly, let 4 and 4' be 
cross-sections of real line bundles associated with &, and &, and let {4(,)} and {q5ia)}  be 
their local representatives on the contractible open sets { U,}. Now on U, n U,, as in 

4c&) = g a , ( x ) 4 c p , ( x ) ,  4 { a ) ( X )  = g & P ( x ) 4 ; P ) ( x )  (3.15) 
(2.21, 

and so 

4(,,(X)4 {a) ( x )  = gap ( x ) g & p  ( x  )4& )4 h) ( x  1. (3.16) 

However, gaPgLP are the structure functions for &, 0 &, and hence (3.16) defines a 
cross-section of this bundle. In other words, the product of sections of two line bundles 
is a section of the tensor product bundle. Now suppose that A,  B and C are twisted 
scalar fields with twists corresponding to the group elements h, h' and h" in H ' ( M ;  Z2). 
Then ABC is a cross-section corresponding to h + h'+ h". The product ABC will be a 
normal field, and hence a candidate for a term in a Lagrangian, if and only if 

h + h' + h" = 0 (3.17) 

which, since every element in H ' ( M ;  Z2) is of order two, is equivalent to 

h = h' + h", h' = h + h", h"= h + h ' .  (3.18) 

Using this argument in the case of interest, it may be checked that every term in the 
Lagrangian and field transformations is consistent with the twist assignments h for E and 
(I,, h' for x and h" for A ,  B, F, G subject to the condition (3.17) that the topological 
'charge' flowing into a vertex must sum to zero in H ' (M;Z2) .  Thus in this scalar 
multiplet theory there are two independent twist assignments h and h' with h" 
determined by (3.18). 

Suppose that in order to probe the local Lorentz invariance and by analogy with 
(2.18) we keep ea& external and construct the generating functional of products of 
energy momentum tensors: 

(3.19) 

which when integrated over the vierbein yields the full quantum gravity theory in the 
sector (h,  h') .  Now consider the effects of a gauge transformation e, ,(x) + e,,(x)Q"b(x) 
and take as an example the term L(e, X h ' )  = f h ' Y a V a ( W ) x h '  where the suffix on x denotes 
the twist. Then from (2.15) L(e ,  x h ' )  =L(eah, ,  x) where ah' is a particular function 
representing h' in H ' ( M ;  Zz) and x is a normal untwisted field. We have for arbitrary 
h" in H ' ( M ;  z2) 

L(enhgf ,  X h ' )  = L(eah ' , f ih ' ,  x) =L(eah'+h",  x) =L(e, Xh'+h") (3.20) 

and similar rules apply to the other terms in the Lagrangian. Thus 

Zh,h ' [  e ah,'] = z h +  h",h'+ h"[ e] (3.21) 

and hence this generating functional is not Lorentz gauge invariant. 
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By analogy with (2.19) one can attempt to construct an invariant functional as a 
weighted sum 

(3.22) 

and invariance up to a factor will be achieved if the complex function x satisfies 

x ( h  + h”, h’+ h”) = ~ ( h ,  h‘)x(h”,  h”). (3.23) 

The transformation (h, h )  + (h  + h”, h’ + h”) may be viewed as an action of the diagonal 
subgroup A = {(h, h )  E H 1 ( M ;  2,) xH‘ (M;  Z 2 ) }  on H 1 ( M ;  Z 2 )  x H 1 ( M ;  Z2).  This 
action is not transitive and correspondingly the space splits up into a family of orbits. 
The crucial observation is that the elements of an orbit are permuted amongst 
themselves under the action of A and consequently it is sufficient in (3.22) to sum only 
over such a subset. More precisely, invariant functionals may be constructed as follows. 

First observe that (3.23) implies that ,y must be a character on A: 

x ( h  + h’, h + h‘) = x ( h ,  h ) x ( h ‘ ,  h’). (3.24) 

Next choose any orbit 0 and select some element (h ,  h‘) in it. The function x may, 
without any loss of physical generality, be normalised such that x(h,  h’) = 1. Now 
choose a character a on A and define x on 0 by 

x ( h + h ” ,  h’+”’)=a(“’, h”). (3.25) 

This clearly satisfies (3.23) on 0 by construction and so we see that the invariant 
functionals are labelled by an orbit and a character on A. The corresponding vacuum 
states are a sort of analogue of the 6-vacuum arising in Yang-Mills theory (Jackiw and 
Rebbi 1976, Callan et a1 1976). In general H’(M; Z2)  is a product of N cyclic groups of 
order two and hence there are 2N orbits and 2N characters on A so that the total number 
of elementary invariant functionals is 22N. 

A simple example is afforded by the case H 1 ( M ;  Z2)  = Z 2  (for example if M is a 
cylinder). The two orbits are O1 = { ( e ,  e), (a, a ) }  and O2 = ((e, a) ,  (a, e ) }  and the 
functionals, invariant up to a factor, are 

ZO,,* = Z(e,e)kZ<a,a), ZO,,* = Z(e,a) f Z<a,e) 

where the f. signs correspond to the two possible characters on A with a(a, a )  = 1 and 
a (a, a )  = -1 respectively. 

3.3. 

The analysis of § 3.2 can evidently be extended to other versions of the scalar multiplet 
coupling with similar results. One exception however, is that the interactions A(A2+ 
B2) and & / ’ ( A  +iysB)’$v of Das et a1 (1977) cannot be permitted unless the scalar 
fields are assigned zero topological twist. 

These techniques can also be readily applied to other supermultiplets. For example 
the Maxwell multiplet Lagrangian is (Ferrara et a1 1976, Ferrara and van Nieuwen- 
huizen 1978b, Stelle and West 1978b) 

2?= 2 ’ s ~  - det e{@L””F,, + $Xy’lv,A - iD2 + $it&gp”yTAF,V} 
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where 
1 $,A = (8, + Zuwab(e, $)crab + $ K ~ , , Y &  + $K (fipSp,crPK - y5D)4,  

FpSp, = FpK - 3 ~  ( J ~ Y J  - J K Y J  

and the supersymmetry transformations are 

SA, = iEy,A, SA = -$,ycr.CIv~ + (det e)-’”y5De, 

SD = (det e)1’2i&yw$,A. 

The principal enunciated in § 3.2 of twist ccnservation at a vertex applies here also 
and leads to the twist assignment h for $, and E ,  h‘ for A and h” for D and A, subject to 
h + h’ + h” = 0 .  The analysis of the invariant vacuum generating functionals will be the 
same as in 9 3.2. 

4. Conclusion 

We have seen that the twist structures of scalar fields and spin connections may be 
meaningfully combined in supermultiplets in a way which is consistent with the 
supersymmetry transformations. This requires that the infinitesimal group parameter 
be itself twisted and that the total twist entering a term in the Lagrangian should sum to 
zero in H 1 ( M ;  Z2) .  The twist sums on either side of a supersymmetry transformation 
equation must also balance. An especial role is played by the Majorana nature of the 
spinor field which makes it impossible to absorb the topological effects in an elec- 
tromagnetic field. It would be interesting to investigate from this point of view the 
N = 2 supergravity with a gauged central charge (Zachos 1978) in which a minimally 
coupled electromagnetic field does appear. 

The different topological sectors are in general labelled by a pair of elements from 
H ’ ( M ; Z 2 )  and different sectors will lead to different results in the quantum field 
theory. Lorentz gauge invariant functionals may be constructed by taking suitable 
linear sums. These functionals are labelled by the orbits and characters of the diagonal 
subgroup and can be used in a complete quantum theory by functionally integrating 
over the vierbein with a suitable gauge fixing term. 

One significant effect of these topological considerations is upon spontaneous 
symmetry breaking. A twisted scalar field F must necessarily vanish somewhere. Thus 
statements such as ( F )  = constant are meaningless and also the field F cannot be added 
as a term in the Lagrangian. Hence spontaneous symmetry breaking is suppressed in 
topological non trivial sectors. The effects of this on, for example, the classification of 
stable ground states can be quite dramatic (Avis and Isham 1978). 

It should be noted that in this paper we have only considered infinitesimal super- 
symmetry transformations. However, it is conceivable that new topological effects 
could be revealed in a study of finite transformations. A start has been made in this 
direction by R Yates (to appear) who places the spin-$ gravitino as a connection in a 
principal bundle rather than a cross-section of a vector bundle as assumed here. 
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